
UPDATE 2007 1

UCEC1044 Basic Microprocessor

Arts of 8088/86 programming

Y.C.See

chark97@hotmail.com

Faculty of Information and Communication Technology

UPDATE 2007 2

Definition
� A program: A sequence of instructions, commands or statements to be executed

by a microprocessor. Programs are normally written in a computer language.

� Machine language: Is the coded sequences of the 0's and 1', which a CPU
understands. Any program written in any computer language must eventually be
translated to machine language. Only computer can understand.

� Assembly language: Uses alphanumeric mnemonics, which when combined
with certain character symbols forms the instructions that a microprocessor
understands. The instructions are combined with other symbols to make
assembly language statements. The statements obey certain syntax rules that
are defined by the assembly language designers. Assembly language statements
need another program (called the assembler) to translate them into machine
code.

� The instruction set: The collection of instructions (normally grouped by
functionality) that a certain microprocessor understands. Each microprocessor has
its own instruction set.

� High level language (HLL): A computer language, which is microprocessor
independent, as long as there is an operating system dependent program (called
the compiler) that translated it into machine code. Eg. Java, C program

� Source code: Any program written in assembly language or an HLL is referred to
as source code.

UPDATE 2007 3

Why assembly language?
� Hardware prospective

� Assembly language teaches how a computer works at the machine
level (i.e. registers)

� Assembly language helps understand the limitations of the Von
Neumann architecture

� Software prospective

� The foundation of many abstract issues in software lies in assembly
language and computer architecture

� Data types, addressing modes, stack, input/output

� Takes up less memory

� Executes much faster

� Assembly language is not used just to illustrate algorithms, but to
demonstrate what is actually happening inside the computer!

UPDATE 2007 4

Comparison HLL and AL

UPDATE 2007 5

Process of translating

English: Display the sum of A times B plus C.

C++: cout << (A * B + C);

Assembly Language:

mov eax,A
mul B
add eax,C

call WriteInt

Intel Machine Language:

A1 00000000

F7 25 00000004

03 05 00000008

E8 00500000

COMPILER

ASSEMBLER

UPDATE 2007 6

Compiler vs Assembler

� The compiler takes as its source code a C
program; this is a file of ASCII characters. It
produces either an assembly language, as an
intermediate step, or else machine code
directly. Either way, the final result is machine
code.

� The assembler takes as its source code an
assembly language; this is also a file of ASCII
characters; it used this to produce machine
code.

UPDATE 2007 7

Machine vs. Assembly Language

Convert to

binary

UPDATE 2007 8

High Level Language

UPDATE 2007 9

Steps to creating a program

1. Edit or create a file using a text editor

2. Assemble the source code into machine

code object files

3. Link the object files into an executable

program

4. Convert the executable to a binary file

5. Download the file

6. Run it!

UPDATE 2007 10

MASM (1)

� Type your assembly code in NOTEPAD and

save as abc.asm then,

� C:\MASM c:\see\abc.asm
� [few lines will appear and you just need to press enter for

three times and this process will compile you file for errors

and generate abc.obj and abc.lst]

� C:\LINK c:\see\abc
� Executable file created

� Run the executable file…which is abc.exe
� Executable file created

UPDATE 2007 11

MASM (2)
� The MASM assembler can download it from the

lecturer website or from

http://www.masm32.com/masmdl.htm

It’s an FREEWARE

� Translate an assembly code to machine code by
generates the following files

SOURCE FILE

MASM

OBJECT FILE
LIST FILE CROSS-REFERENCE

FILE

UPDATE 2007 12

Notepad

abc.ASM

Assembler

abc.LST

abc.CRF
abc.OBJ

Converter--hextobin abc.BINabc.EXE

Linker

abc.MAP

List file shows all opcodes and

offsets, and locations of errors.

Cross-reference File
- list of symbols and labels

Map File
- details memory usage

MASM (3)

UPDATE 2007 13

Files created by the assembler and linker

UPDATE 2007 14

DEBUG

� Go to dos prompt or type cmd on the run

command

� In dos prompt type “debug” and then ?

UPDATE 2007 15

Debug Command Set

UPDATE 2007 16

Register and Flag Name in Debug
� R register

UPDATE 2007 17

8088 instruction

� [Label:] Instruction_mnemonic dest., source ; comment

register, register

or register, memory

or memory, register

NOT memory, memory the assembler

ignores everything

after the semicolon

The label is optional.

It must always begin with a letter and may contain only

letters and digits.

It cannot duplicate a register name or instruction mnemonic.

A three- or four-letter mnemonic indicating

the instruction to be performed

UPDATE 2007 18

Labels

� Act as place markers

� marks the address (offset) of code and data

� Code label

� target of jump and loop instructions

� example: S1: (followed by colon)

UPDATE 2007 19

Mnemonics and Operands

� Instruction Mnemonics

examples: MOV, ADD, SUB, MUL, INC, DEC

� Operands

� constant (immediate value)

� constant expression

� register

� memory (data label)

UPDATE 2007 20

Comments

� Comments are important

� explain the program's purpose

� when it was written, and by whom

� revision information

� tricky coding techniques

� application-specific explanations

� Single-line comments

� begin with semicolon (;)

UPDATE 2007 21

;THE FORM OF AN ASSEMBLY Language PROGRAM
;NOTE: USING SIMPLIFIED SEGMENT DEFINITION

.MODEL SMALL

.STACK 64

.DATA
DATA1 DB 52H
DATA2 DB 29H
SUM DB ?

.CODE
MAIN PROC FAR ;this is the program entry point

MOV AX, @DATA ;load the data segment address
MOV DS, AX ;assign value to DS
MOV AL, DATA1 ;get the first operand
MOV BL, DATA2 ;get the second operand
ADD AL, BL ;add the operands
MOV SUM, AL ;store the result in location

SUM
MOV AH, 4CH ;set up to return to DOS
INT 21 H
MAIN ENDP
END MAIN ;this is the program exit point

Example

of

assembly

program

(From Muhammad Ali Mazidi The 80x86 IBM PC
Compatible Computers Vol.1 and Vol.2)

UPDATE 2007 22

Example 2
Program usage no more than 64K

data and 64K code
Stack=256bytes

.data=where variables are stored

.code – beginning of the code
segment

Beginning of procedure called main
@=address of data

9=msdos function to display a
string

Halt the program to return to O/S
End of procedure
End of program

UPDATE 2007 23

Model Definition (1)

� choose the size of the memory model.

� memory model consists of
� SMALL,

� MEDIUM,

� COMPACT,

� LARGE

� HUGE

� TINY

UPDATE 2007 24

Model Definition (2)
� .MODEL SMALL

� Most widely used memory models for
� the small model uses a maximum of 64K bytes for code and

another 64K bytes for data.

� .MODEL MEDIUM
� the data must fit into 64K bytes
� the code can exceed 64K bytes of memory

� .MODEL COMPACT
� the data can exceed 64K bytes
� but the code cannot exceed 64K bytes

� .MODEL LARGE
� both data and code can exceed 64K
� but no single set of data should exceed 64K

� .MODEL HUGE
� both code and data can exceed 64K
� data items (such as arrays) can exceed 64K

� .MODEL TINY
� used with COM files in which data and code must fit into 64K bytes

UPDATE 2007 25

Segment Definition

� Can write an Assembly language program that uses only
one segment, but normally a program consists of at least
three segments:

� .STACK
� marks the beginning of the stack segment

� stack segment defines storage for the stack

� E.g. .STACK 64 ; reserves 64 bytes of memory for the stack

� .DATA
� marks the beginning of the data segment

� data segment defines the data that the program will use

� .CODE
� marks the beginning of the code segment

� code segment contains the Assembly language instructions

UPDATE 2007 26

Assembler Directives (1)

� instructions to the assembler instead of

instructions to be executed at run-time.

� The most common used directives are the DB

and DW commands to reserve memory.

� E.g.

Reply dB ‘Press any key to continue’

variable name
assembler directive

ASCII string

UPDATE 2007 27

Assembler Directives (2)
� ORG (origin)

� indicates the beginning of an offset address.

� any code and data that follows starts at the new address

� DB (define byte)
� allocates memory in byte-sized units

� follow the directive with the value you wish to store

� decimal, binary, hex, ASCII, or undefined

� DUP (duplicate)
� duplicates a given number or character

� precede with number of duplicates, follow (in brackets) with the value

� DW (define word)
� similar to DB, but allocates memory in word-sized units

� best to store words at even memory addresses (optimal for 8086)

� EQU (equate)
� defines constants

� does not set aside storage for the data

MORE! Refer page 308-319 The 8088 and 8086 Microprocessors by Walter A.Triebel and Avtar Singh

UPDATE 2007 28

Assembler Directives (3)
� E.g.

� data_1 DB 10 ; store decimal value

data_2 DB 6CH ; store hex value

data_3 DB ‘M’ ; store single character G as ASCII code

ORG 10h ; set offset to 10 hex

data_4 DB “Computer” ; stores 8 ASCII characters

ORG 200h

data_5 DB 10 DUP(0) ; fill 10 bytes with value 0

data_6 DB 6 DUP (?) ; set aside 6 bytes with undefined values

data_7 DW 320 ; store decimal word

� To use the above values:

� MOV AL, data_1 ; AL is now 14

MOV DI, offset data_4 ; DI is now 10h (the offset) of “Computer”

MOV data_5, BL ; the value of BL is saved to memory

UPDATE 2007 29

Assembler Directives-PROC (function)
� The first line of the segment after the .CODE directive is the

PROC

� the procedure is a group of instructions designed to accomplish a
specific function.

� A code segment may consist of only one procedure, but usually
is organized into several small procedures in order to make the
program more structured.

� Every procedure must have :
� a name defined by the PROC directive,

� followed by the assembly language instructions

� and closed by the ENDP directive.

� The PROC and ENDP statements must have the same label.

� The PROC directive may have the option FAR (both IP and CS is
saved) or NEAR (default- IP is saved).

UPDATE 2007 30

Summarize of directive

UPDATE 2007 31

Number Format

� Hexadecimal numbers ---- character h or H

� E.g. MOV AL, 3Ah

� Must begin with a number else use zero

� E.g. MOV AL, 0ffh

� Q for octal

� xB for binary

UPDATE 2007 32

Addressing modes
� Addressing modes tells how we can determine the exact location of

the operand we want.
� Implied - the data value/data address is implicitly associated with the

instruction.
� Register - references the data in a register or in a register pair.
� Immediate - the data is provided in the instruction.
� Direct - the instruction operand specifies the memory address where data is

located.
� Register indirect - instruction specifies a register containing an address,

where data is located. This addressing mode works with SI, DI, BX and BP
registers. Based - 8-bit or 16-bit instruction operand is added to the
contents of a base register (BX or BP), the resulting value is a pointer to
location where data resides.

� Indexed - 8-bit or 16-bit instruction operand is added to the contents of an
index register (SI or DI), the resulting value is a pointer to location where
data resides.

� Based Indexed - the contents of a base register (BX or BP) is added to the
contents of an index register (SI or DI), the resulting value is a pointer to
location where data resides.

� Based Indexed with displacement - 8-bit or 16-bit instruction operand is
added to the contents of a base register (BX or BP) and index register (SI or
DI), the resulting value is a pointer to location where data resides.

UPDATE 2007 33

Register addressing (1)

� Memory is not accessed when this mode is

executed.

� Fast

� Source and destination must have the same

size

� e.g. ADD AL,BL

UPDATE 2007 34

Register addressing (2)

29A2DX

1643CX

1B69BX

0000AX

0004DI

0001SI

1B03BP

FF03SP

MOV AX,BX ;AX = 1B69H

1B66

1B67

1B68

1B69

1B6A

1B6B

UPDATE 2007 35

Immediate addressing (1)

� The source operand is a constant

� Can be used to load information into register
except segment register and flag register

� E.g.
� MOV AX, 567 ; load decimal value 567 into AX

� The data must be first moved to a register
then to the segment register.
� MOV AX, 2560H

� MOV DS,AX

� MOV DS,2560H ; ------ERROR!

UPDATE 2007 36

Immediate addressing (2)

29A2DX

1643CX

1B69BX

0000AX

0004DI

0001SI

1B03BP

FF03SP

MOV AX,1B67H ;AX = 1B67H

1B67H

1B66

1B67

1B68

1B69

1B6A

1B6B

UPDATE 2007 37

Direct addressing (1)

� The effective address is formed by the addition of

a segment register and a displacement value that

is coded directly into the instruction.

� This address is the offset address

� E.g.

� MOV DL, [1234H] ;move contents of DS:1234H into

DL

� The physical address is calculated by combining

the contents of offset location 1234 with DS

UPDATE 2007 38

How?
Let’s said DS=1234H

MOV AL,24H

MOV [2345H],AL

What is the physical address of the memory

location and its contents after the above

execution?

AL=24H

DS:2345 which is 1234H:2345H

12340H+2345H = 14685H = physical address

After the execution the memory location with address 14685H will contain the
value 24H

UPDATE 2007 39

Direct addressing (2)

29A2DX

1643CX

1B69BX

0000AX

0004DI

0001SI

1B03BP

FF03SP

A2

01

24

1B

69

35
1B66

1B67

1B68

1B69

1B6A

1B6B

MOV AX, [1B67H] ;AX = 1B69H

1B69H

UPDATE 2007 40

Register indirect (1)
� A choice of four registers (BX,BP,SI,DI) to use within

the square brackets to specify a memory location.

� The operand is held by these register.

� They must combined with DS in order to generate
the 20-bit physical address.

� E.g. MOV [DI],AH
;move the contents of AH into DS:DI

MOV DL,[SI]
;the contents of DS:SI into DL

MOV AL,[BX]
;the contents of the memory location pointed by DS:BX into AL

UPDATE 2007 41

HOW?

� DS=1234H, SI=2345H, and AX=17ABH.

MOV [SI],AX

is executed. What is the contents of the

memory location?

Contents of AX are moved into memory locations with logical address
DS:SI amd DS:SI+1

Therefore the physical address starts at DS + SI = 14685H

According to little endian (early lecturers)

Low address 14685H contains ABH, the low byte

High address 14686H contains 17H, the high byte

UPDATE 2007 42

Register indirect (2)

29A2DX

1643CX

1B69BX

0000AX

0004DI

0001SI

1B03BP

FF03SP

A2

01

24

1B

69

35
1B66

1B67

1B68

1B69

1B6A

1B6B

MOV AX, [BX] ;AX = 0124H

0124H

UPDATE 2007 43

Base relative (1)
� Uses one of the two base registers (BX,BP) as the

pointer to the desired memory location.

� Similar to register indirect addressing, the only
difference is that an 8 or 16-bits offset may be
included

� Physical address are DS for BX ad SS for BP

� Offset is interpreted as a signed 2’s complement
number 8-bits (-128 -> 127) or 16-bits (-32768 ->
+32767)

� So have the ability to point forward or backward in
memory.

� E.g. MOV CX,[BX]+10 = MOV CX,[BX+10]
= MOV CX,10[BX]

� ;move DS:BX+10 and DS:BX+10+1 into CL and CH

� ;Physical address = DS*10 + BX+10

UPDATE 2007 44

Base relative (2)

29A2DX

1643CX

1B69BX

0000AX

0004DI

0001SI

1B03BP

FF03SP

A2

01

24

1B

69

35
1B66

1B67

1B68

1B69

1B6A

1B6B

MOV AX, [BX+SI] ;AX =A201H

A201H

+

UPDATE 2007 45

Index Relative (1)

� Similar to based relative addressing

� Except that registers DI and SI hold the offset

address

� E.g. MOV DX,[SI]+3
� ;Physical address= DS*10 + SI +3

MOV CL,[DI]+6

;Physical address= DS*10 + DI +6

UPDATE 2007 46

How?
DS = 4500, SS = 2000, BX = 2100, SI = 1486, DI = 8500,

� BP= 7814, and AX = 2512. What are their physical memory
location for the following instruction to be executed?

1. MOV [BX]+20, AX
2. MOV [SI]+10, AX
3. MOV [DI]+4, AX
4. MOV [BP]+12, AX

PA = segment reg. *10 + (offset reg.) + displacement
1. DS:BX+20 45000 + 2100 + 20 = location 47120 = (12) and 47121 = (25)
2. DS:SI+10 45000 + 1486 + 10 = location 46496 = (12) and 46497 = (25)
3. DS:DI+4 45000 + 8500 + 4 = location 4D504 = (12) and 4D505 = (25)
4. SS:BP+12 20000 + 7814+ 12 = location 27826 = (12) and 27827 = (25)

UPDATE 2007 47

Index Relative

29A2DX

1643CX

1B69BX

0000AX

0004DI

0001SI

1B03BP

FF03SP

A2

01

24

1B

69

35
1B66

1B67

1B68

1B69

1B6A

1B6B

MOV AX, [BX-3H] ;AX =6935H

6935H

-3

+

UPDATE 2007 48

Base Index Relative (1)
� Combines based and indexed addressing.

� Contents of both registers are not signed numbers (0

– 65535)

� One base register and one index register are used.

� E.g.

MOV CH,[BX][SI] + 10

� ;Physical address= DS*10 + BX +SI +10

MOV AH,[BP][SI] + 5

; Physical address= SS*10 + BP +SI + 5

UPDATE 2007 49

Base Index Relative (2)

29A2DX

1643CX

1B69BX

0000AX

0004DI

0001SI

1B03BP

FF03SP

A2

01

24

1B

69

35
1B66

1B67

1B68

1B69

1B6A

1B6B

MOV AX, [BX+SI-2H] ;AX =241BH

241BH

-2

+

UPDATE 2007 50

To remember!!
WAKE UP..COPY TIME!

UPDATE 2007 51

In

different

name
DIFFERENT

FORM

WAKE UP! COPY TIME

UPDATE 2007 52

Port Addressing

� Use of I/O ports for data communication

between the CPU and outside world.

� One way to get data is read it from input port
� IN AL,DX

� ; 8-bits are input to AL from I/O port DX

� To write data to output port
� OUT DX,AL

� ;8-bits are output from AL to I/O port DX

UPDATE 2007 53

INFO!

� MOV AH,[BP][SI] + 5
; Physical address= SS*10 + BP +SI + 5

Equivalent to

� MOV AH, [BP+SI+5]; or

� MOV AH, [SI+BP+5] ;

� MOV AX, [SI][DI] + offset is illegal.

UPDATE 2007 54

Summary of the Addressing Mode

UPDATE 2007 55

Summary of Offset

DINoneESString
Destination

SI,DI,

addresss

CS,ES,SSDSString Source

BX,addressCS,ES,SSDSGeneral Data

SP,BPnoneSSStack Operations

IPnoneCSInstruction Fetch

OffsetAlternate
Segment

Default
Segment

Type of Memory

Reference

UPDATE 2007 56

Segment Override
� The pointer register BX,SI or DI specifies an offset

address relative to DS

� For e.g.
MOV BX, [10H] ; uses DS

� It’s possible to specify an offset relative to one of the
other segment register.

segment_register:[pointer_regsegment_register:[pointer_reg]]

� For e.g.
MOV BX,ES:[SI]

; if SI = 0100H the source address
=ES:0100H

� Can also be used with based and indexed modes.

UPDATE 2007 57

Summary of Segment Overrides

DS:BX+DI+32SS:BX+DI+32MOV SS,[BX][DI]+32,AX

DS:BX+12ES:BX+12MOV CX,ES:[BX]+12

SS:BPDS:BPMOV AX,DS:[BP]

DS:SISS:SIMOV DX,SS:[SI]

SS:BPCS:BPMOV AX,CS:[BP]

Default SegmentSegment UsedInstruction

:

UPDATE 2007 58

Types of 8088/86 instructions
� Can be (roughly) divided into eight different classes:

� Data moving instructions. ---mov, lea, les , push, pop,
pushf, popf

� Arithmetic - add, subtract, increment, decrement, convert
byte/word and compare.---- add, inc sub, dec, cmp, neg,
mul, imul, div, idiv

� Logic - AND, OR, exclusive OR, shift/rotate and test.---and,
or, xor, not, shl, shr, rcl, rcr.

� String manipulation - load, store, move, compare and scan
for byte/word. ---movs, stos, lods.

� Control transfer - conditional, unconditional, call subroutine
and return from subroutine. ---jmp, call, ret, conditional
jumps

� Input/Output instructions. ---in, out.
� Conversions ---cbw, cwd, xlat

� Other - setting/clearing flag bits, stack operations, software
interrupts, etc.

UPDATE 2007 59

Summary of 8088/86 instructions

UPDATE 2007 60

MOV
� MOV destination,source

� 8 bit moves
� MOV CL,55h

� MOV DL,CL

� MOV BH,CL

� 16 bit moves
� MOV CX,468Fh

� MOV AX,CX

� MOV BP,DI

� Data can be moved among all registers but data
cannot be moved directly into the segment registers
(CS,DS,ES,SS).

� To load as such, first load a value into a non-segment
register and then move it to the segment register

� MOV AX,1234h

MOV DS,AX

UPDATE 2007 61

ADD / SUB

� ADD destination,source

� The ADD instruction tells the CPU to add the

source and destination operands and put out

the results in the destination
� MOV DH,25H

ADD DH,34h ; (AL = 59h)

� SUB destination,source
� MOV DH,60H

SUB DH,A5h ; (AL =??)
BBH with C=1

UPDATE 2007 62

ADC/SBB

ADC AX, BX ; AX=1234h, BX=2345h

; AX=1234h + 2345h + 1=357Ah,

; C=0

UPDATE 2007 63

AAA/AAS

MOV AL,”9”

AL=39H

AL=10

UPDATE 2007 64

DAA/DAS

Add 06 or 60 if lower or

upper 4-bits greater than

9

UPDATE 2007 65

MUL/IMUL(signed)/DIV/IDIV(signed)

AL=-1 and CL=-2

MUL CL ; 11111111*11111110=1111110100000010=FD02=AX

IMUL CL ; -1*-2=2

AX= -21H= -33(decimal) and BH=5H =answer -6 remainder -3

IDIV BH ; AX=FDFAh AL=FA= -6 remainder AH=FD = -3

DIV BH ; should BX=05H and DIV BX give you AX=332C

and DX=3 as remainder

UPDATE 2007 66

CBW/CWD

� CBW (Convert singed byte to signed word)

will copy D7 (sign flag) to all bits in AH.

� CWD (convert signed word to singed

double word) copies D15 of AX to all bits of

the DX register.

MOV AX,6E2FH ; 28,207 = 0110 1110 0010 1111

MOV CX,13D4H ; +5,076 = 0001 0011 1101 0100

ADD AX,CX ;=33,283 = 1000 0010 0000 0011=-32,523

UPDATE 2007 67

� A program to add 5 bytes of data

25h,12h,15h,1Fh, and 2Bh.

� MOV AL,00h

ADD AL, 25h

ADD AL, 12h

ADD AL,15h

ADD AL,1Fh

ADD AL,2Bh

� Data and code are mixed in the
instructions here

� The problem with it is if the data
changes, the code must be
searched for every place the data
is included and data retyped.

� It is a good idea then to set aside
an area of memory strictly for data

Smart programming (1)

� The data is first placed in the
memory locations

� DS:0200 = 25h

DS:0201 = 12h

DS:0202 = 15h

DS:0203 = 1Fh

DS:0204 = 2Bh

� MOV AL,0

ADD AL,[0200] ; add the
contents of DS:0200 to AL

ADD AL,[0201]

ADD AL,[0202]

ADD AL,[0203]

ADD AL,[0204]

� If the data is stored at a different
offset address, say 0100 h ???

RETYPE

THE

WHOLE

PROG.

UPDATE 2007 68

Smart programming
� Use BX as a pointer

� MOV AL,0

MOV BX,0200h

ADD AL,[BX]

INC BX

ADD AL,[BX]

INC BX

ADD AL,[BX]

INC BX

ADD AL,[BX]

INC BX

ADD AL,[BX]

� If the offset address of data is to be changed, only
one instructions will need to be modified

SMARTER WAY

BUT STILL LONG…

UPDATE 2007 69

� Conditional jump instruction will be used to implement the counter
checking logic.

� data segment
count equ 5
result dw 01h dup (?)
data ends
code segment
org 100h
start: mov AX,data

mov DS,AX
xor AX,AX
xor BX,BX
mov SI,offset numlist

again: mov BL,[SI]
add AX,BX
inc SI
dec CX
jnz again
mov DI,offset result
mov [DI],AX
code ENDS

end start

BEST

@

Numlist db 12h,….

UPDATE 2007 70

Decision Instructions for Signed and Unsigned Integers

UPDATE 2007 71

Jump instruction

� Divided into:
� Unconditional jump

� Conditional jump

� Two cases of jump action:
� SHORT jump --- target location within –128 to +127 from

the current location.

� Intra-segment or NEAR jump --- only IP is changed;
displacement for direct jump is up to 32K.

� Inter-segment or FAR jump --- both CS and IP are
changed;

� Useful in decision and repetition of a specific portion
of the program.

UPDATE 2007 72

Short/Near/Far

DEBUG

1122:0100 EB 1E JMP 0120

1122:0102 E9 FB 01 JMP 0300

1122:0105 EA 00 02 34 12 JMP 1234:0200

Displacements

IP = IP + disp

Displacements

IP = IP + disp

New IP = 0200

New CS = 1234

New IP = 0200

New CS = 1234

Address
of code Machine

Code

Far Jump
Sets IP and

CS

Near Jump

(-32K to

32K)

Short Jump

(-128 to

127)

JMP label ; default is near
JMP SHORT label
JMP FAR PTR label

UPDATE 2007 73

Decision instruction

� If the condition by Jxx is TRUE,
then program execution Jumps to the near destination

If the condition by Jxx is FALSE,

then program execution continues with the next
instruction

� Consider JC S1
S2:

goes to label S1 if the C flag is set, C=1
goes to S2 if the C flag is clear, C=0

UPDATE 2007 74

E.g.1

1234:0100 cmp ax, [800]

1234:0104 jle 109

1234:0106 jmp 200

1234:0109

DEBUG

cmp ax, [800h]

jle loc

jmp further_loc

loc:

.ASM Jump to offset 200h only if
AX > DS:[800h]

CMP dest, src ; dest-src to set flags

; result is NOT stored

The compare instruction can be used

to set flags without modifying the

destination operand.

0
1
1
0

0
1
0
1

0
0
1
1

CB
XOR
A

UPDATE 2007 75

E.g. 2

AGAIN: MOV AL, [BX]+2

CMP AL, 61H

JB NEXT

CMP AL, 7AH

JA NEXT

AND AL, 0DFH

NEXT:

YES NO

Mazidi & Mazidi
The 80x86 IBM PC and Compatible Computers (Volume 1)

Copy 1 byte from

memory location

DS:(BX+2) into

AL

Compare AL with
the value 61h

Is AL below the
value 61h?

UPDATE 2007 76

E.g.3

AGAIN: MOV AL, [BX]+2

CMP AL, 61H

JB NEXT

CMP AL, 7AH

JA NEXT

AND AL, 0DFH

NEXT: MOV [SI], AL

YES
NO Is AL above the

value 7Ah?

Compare AL with
the value 7Ah

UPDATE 2007 77

E.g.4

AGAIN: MOV AL, [BX]+2

CMP AL, 61H

JB NEXT

CMP AL, 7AH

JA NEXT

AND AL, 0DFH

NEXT: MOV [SI], AL Move to memory
location DS:SI the

contents of AL

Bitwise AND register AL
with 0DFH (1101 1111b)

UPDATE 2007 78

E.g.5
al = *(bx + 2);

if (al >= 0x61 && al <= 0x7A) {

al = al & 0xDF;

}

*si = al;

al = *(bx + 2);

if (al >= 0x61 && al <= 0x7A) {

al = al & 0xDF;

}

*si = al;

0005 8A 47 02 AGAIN: MOV AL, [BX]+2
0008 3C 61 CMP AL, 61H
000A 72 06 JB NEXT
000C 3C 7A CMP AL, 7AH
000E 77 02 JA NEXT
0010 24 DF AND AL, 0DFH
0012 88 04 NEXT: MOV [SI], AL

UPDATE 2007 79

Repeat-Until program and instruction

sequence

UPDATE 2007 80

Iteration

Using condition
Delay: PUSH CX

MOV CX, 2000

Here: DEC CX

JNZ Here

POP CX

Using LOOP instruction
Delay: PUSH CX

MOV CX, 2000

Here: LOOP Here

POP CX

Till

CX=0

UPDATE 2007 81

E.g. using JCXZ
Jump if register CX is zero

Delay_1: PUSH CX

MOV CX, 2000

Here: DEC CX

JCXZ Done

JMP Here

Done: POP CX

Delay_1: PUSH CX

MOV CX,2000

Here: DEC CX

JNZ Here

POP CX

=

UPDATE 2007 82

LOOPE / LOOPZ LOOPNE / LOOPNZ

� A variation on LOOP

� Decrements CX

� Jumps if CX is not 0 and
ZF is set

� Read as:

� Loop while equal

� Loop while zero

� Another variation on LOOP

� Decrements CX

� Jumps if CX is not 0 and
ZF is clear

� Read as:

� Loop while not equal

� Loop while not zero

UPDATE 2007 83

Single and nested loop

UPDATE 2007 84

Example

Assume that the daily temperatures for the last 30 days
have been stored starting at memory location 1200H. Find

first day that had a 20-degree temperature.

MOV CX, 30 ; Set up counter

MOV DI, 1200H ; Set up the pointer

AGAIN: CMP [DI], 20 ; Check temperature

INC DI ; Does not affect flags

LOOPNE AGAIN

; If ZF is 0, no day was found

Mazidi & Mazidi

UPDATE 2007 85

Example

DATA DB +13,-10,+19,+14,-18 ;0d,f6,13,0e,ee

MOV CX,5 ;LOAD COUNTER]

SUB BX, BX ;CLEAR BX,

MOV SI, OFFSET DATA ;SET UP POINTER

BACK: MOV AL,[SI] ;MOVE BYTE INTO AL

CBW ;SIGN EXTEND INTO AX

ADD BX, AX ;ADD TO BX

INC SI ;INCREMENT POINTER

DEC CX ;DECREMENT COUNTER

JNZ BACK ;LOOP IF NOT FINISHED

MOV AL,5 ;MOVE COUNT TO AL

CBW ;SIGN EXTEND INTO AX

MOV CX,AX ;SAVE DENOMINATOR IN CX

MOV AX,BX ;MOVE SUM TO AX

CWD ;SIGN EXTEND THE SUM

IDIV CX ;FIND THE AVERAGE

Write a program that calculates the average of five temperatures and writes

the result in AX

UPDATE 2007 86

Shift

UPDATE 2007 87

Rotate

UPDATE 2007 88

Example

UPDATE 2007 89

Subroutine handling
� CALL & RET (return)

� Saves information on the stack

� Procedure must end with a RET

� Can be NEAR (intra-segment) or FAR (inter-segment)

� A NEAR CALL must be matched by a NEAR RET

� In a NEAR CALL, the contents of the register IP is pushed onto the
stack

� IP is the given a new value, based on the location of the subroutine

� RET pops a value off the stack and into IP

� Without CALL, RET pops an invalid IP

� In a FAR CALL, both CS and IP are stored on the stack

� A FAR return pops IP and CS off the stack

UPDATE 2007 90

CALL
CALL SUBR1

SUBR1 PROC NEAR

... ; your code

...

RET

SUBR1 ENDP

These labels do NOT
have colons after them.

CALL SUBR1

SUBR1 PROC FAR

... ; your code

...

RETF

SUBR1 ENDP

MOV AL, 200 ;

X

X

CALL SUBR1

CALL SUBR2

SUBR1: blah1

RET

SUBR2: blah2

RET

UPDATE 2007 91

DIFFERENCE STYLES

Full Segment Definition
;stack segment
Name1 SEGMENT

db 64 dup (?)
Name1 ENDS
;data segment
Name2 SEGMENT

value1 db 54
;data

Name2 ENDS
;code segment
Name3 SEGMENT
MAIN PROC FAR

ASSUME CS: ,DS: ,SS:
mov AX,Name2
mov DS,AX

MAIN ENDP
Name3 ENDS

END MAIN

Simplified Format
.model small
.stack 64

;data segment
.data
value1 db 54

.code
MAIN PROC FAR

mov AX,@data
mov DS,AX

MAIN ENDP
END MAIN

UPDATE 2007 92

DIFFERENCE STYLES II

Full Segment Definition
CODE SEGMENT

ASSUME CS:CODE DS:CODE
main proc far

.

.
call test1

.

.
main proc end

Test1 proc near
.
.

Test endp

Msg db “…”

CODE ENDS
END MAIN

Simplified Format
.model small
.stack 64

;data segment
.data
value1 db 54

.code
MAIN PROC FAR

mov AX,@data
mov DS,AX

MAIN ENDP
END MAIN

UPDATE 2007 93

MANY MORE

INSTRUCTIONS…. LEARN IT

YOURSELF

UPDATE 2007 94

Hand Coding (1)
R/MREGMODWDOPCODE

� Opcode field ---8-BITS

� Register Direction Bit (D bit)

� 1: destination

� 0: source

� Data Size Bit (W bit)

� 0: 8 bits 1: 16 bits

� • Byte 2 has two fields:

� Mode field (MOD)

� Register field (REG)

� Register/memory field (R/M field)

2 TO 6 BYTES

UPDATE 2007 95

Encoding of reg Field when w field us

present in instruction

UPDATE 2007 96

2-bit MOD field and 3-bit R/M field together specify the second

operand

UPDATE 2007 97
Refer to 8088/86 datasheet

UPDATE 2007 98

HAND CODING

MOV AX, 2000H ; LOAD AX REGISTER
MOV DS, AX ; LOAD DATA SEGMENT ADDRESS
MOV SI, 100H ; LOAD SOURCE BLOCK POINTER
MOV DI, 120H ; LOAD DESTINATION BLOCK POINTER
MOV CX, 10H ; LOAD REPEAT COUNTER

NXTPT: MOV AH,[SI] ; MOVE SOURCE BLOCK ELEMENT TO AH

MOV [DI],AH ; MOVE SOURCE BLOCK ELEMENT FROM AH TO DEST. BLOCK

INC SI ; INCREMENT SOURCE BLOCK POINTER
INC DI ; INCREMENT DESTINA. BLOCK POINTER
DEC CX ; DECREMENT REPET COUNTER
JNZ NXTPT ; JUMP TO NXTPT IF CX NOT EQUAL TO ZERO
NOP ; NO OPERATION

Refer page 74-79, 113-116 The 8088 and 8086 Microprocessors by Walter A.Triebel and Avtar Singh

Identify the type of instruction and hand code the above assembly program!

UPDATE 2007 99

HAND CODING (2)

� MOV DS,AX
Opcode = Move reg. to segment

1000 1110
MOD=11-reg mode no displacement
REG=11- to DS
R/M=000 – from AX

� MOV BL,AL
Opcode = 100010
D = 0 (AL source operand -

from)
W bit = 0 (8-bits)
MOD = 11 (register mode)
REG = 000 (from AL)
R/M = 011 (to BL)

0 R/MREGMODOPCODE

1000 1110 11 0 11 000 = 8E D8h

R/MREGMODWDOPCODE

1000 10 0 0 11 000 011 = 88 C3h

� ADD AX,[SI]
Opcode=000000

D = 1 (to register)

W bit = 1 (16-bits)

MOD = 00 (displacement absent)

REG = 000 (to AX)

R/M = 100 ([SI]+disp)

R/MREGMODWDOPCODE

000000 1 1 00 000 100 = 03 04 h

� ADD [BX][DI] + 1234h, AX

Opcode=000000

D = 0 (from register)

W bit = 1 (16-bits)

MOD = 10 (16-bits displacement)

REG = 000

R/M = 001 ([BX][DI]+disp)

R/MREGMODWDOPCODE

000000 0 1 10 000 001 = 01 81
34 12h

OR

8A D8h

UPDATE 2007 100

Jump if Condition is met

UPDATE 2007 101

JMP-Unconditional Jump (to same

segment)

UPDATE 2007 102

Answer

MOV AX, 2000H ; IMMEDIATE DATA TO REGISTER B80020
MOV DS, AX ; MOVE REGISTER TO SEGMENT REG 8ED8
MOV SI, 100H ; MOV IMMED. TO REG BE0001
MOV DI, 120H ; MOV IMMED. TO REG BF2001
MOV CX, 10H ; MOV IMMED. TO REG B91000

NXTPT: MOV AH,[SI] ; MOV MEMORY DATA TO REG 8A24
MOV [DI],AH ; MOV REGISTER DATA TO MEMORY 8825
INC SI ; INCREMENT REG. 46
INC DI ; INCREMENT REG. 47
DEC CX ; DECREMENT REG. 49
JNZ NXTPT ; JUMP ON NOT EQUAL TO ZERO 75F7
NOP ; NO OPERATION 90

UPDATE 2007 103

QUIZ

� Hand code the following instructions

� MOV CX,7

� MOV AL,BL

� MOV [6465H],AX

� MOV DL,[SI]

� MOV AX,[BX+4]

� MOV [DL-8],AL

� MOV CL,[BX+DI+2080H]

� AND AL,[345H]

� TEST DX,2003H

