Faculty of Information and Communication Technology

UCEC1044 Basic Microprocessor

Arts of 8088/86 programming

Y.C.See
chark97@hotmail.com

UPDATE 2007

Definition

A program: A sequence of instructions, commands or statements to be executed
by a microprocessor. Programs are normally written in a computer language.

Machine language: Is the coded sequences of the 0's and 1', which a CPU
understands. Any program written in any computer language must eventually be
translated to machine language. Only computer can understand.

Assembly language: Uses alphanumeric mnemonics, which when combined
with certain character symbols forms the instructions that a microprocessor
understands. The instructions are combined with other symbols to make
assembly language statements. The statements obey certain syntax rules that
are defined by the assembly language designers. Assembly language statements
negd another program (called the assembler) to translate them into machine
code

The instruction set: The collection of instructions (normally grouped by
functionality) that a certain microprocessor understands. Each microprocessor has
its own instruction set.

High level language (HLL): A computer language, which is microprocessor
independent, as long as there is an operating system dependent program (called
the compiler) that translated it into machine code. Eg. Java, C program

Source code: Any program written in assembly language or an HLL is referred to
as source code.

UPDATE 2007 2

Why assembly langnage?

Hardware prospective

o Assembly language teaches how a computer works at the machine
level (i.e. registers)

o Assembly language helps understand the limitations of the Von
Neumann architecture

Software prospective

o The foundation of many abstract issues in software lies in assembly
language and computer architecture

o Data types, addressing modes, stack, input/output
o Takes up less memory
o Executes much faster

o Assembly language is not used just to illustrate algorithms, but to
demonstrate what is actually happening inside the computer!

UPDATE 2007 3

Comparison HLLL and AL

Type of Application

High-Level Languages

Assembly Language

Business application soft-
ware, written for single
platform, medium to large

hﬁt

Formal structures make it easy to
organize and maintain large sec-

tions of code.

Minimal formal structure, so one
must be imposed by program-
mers who have varying levels of
experience. This leads to difficul-
ties maintaining existing code.

Hardware device driver.

Language may not provide for
direct hardware access. Even if 1t
does, awkward coding techniques
must often be used, resulting in
maintenance difficulties.

Hardware access is straightfor-
ward and simple. Easy to main-
tain when programs are short and
well documented.

Business application written
for multiple platforms (dif-

ferent operating systems).

Usually very portable. The source
code can be recompiled on each
target operating system with mini-
mal changes.

Must be recoded separately for
each platform, often using an
assembler with a different syn-
tax. Difficult to maintain,

Embedded systems and
compuler games requiring

direct hardware access.

Produces too much executable
code, and may not run efficiently.

[deal, because the executable

code is small and runs quickly.

UPDATE 2007

Process of translating

English: Display the sum of A times B plus C.

l

C++: cout<< (A* B + C); :’\COMP"—ER

!

Assembly Language: Intel Machine Language:
mov eax,A A1 00000000
mducll B c > E7 25 00000004
add eax, 03 05 00000008
call WriteInt
E8 00500000
ASSEMBLER

UPDATE 2007 5

Compiler vs Assembler

The compiler takes as its source code a C
program; this is a file of ASCII characters. It
produces either an assembly language, as an
intermediate step, or else machine code
directly. Either way, the final result is machine
code.

The assembler takes as its source code an
assembly language; this is also a file of ASCII
characters; it used this to produce machine
code.

UPDATE 2007 6

Machine vs. Assembly Language

Convert to
binary
Mnemonics
Address Hex Object Code Op-Code Operand Comment
0100 E4 | 27 IN AL2TH Input first number from port 27H and store in AL
0102 88 C3 MOV BL.AL Save a copy of register AL in register BL
0104 E4) IN AL,27TH Input second number to AL
0106 00 | D8 ADD AL,BL Add contents of BL to AL and store the sum in AL
0107 E6 30 OuT 30H,AL Output AL to port 30H
0109 F4 HLT Halt the computer

UPDATE 2007

High Level Language

#include <stdie.h>

main
{

()

int N1;
int N2 ;
int Sum;

printf ("\nEnter the first number to add
scanf ("%d, &N1) ;

printf{*\nEnter the second number to add
scanf ("%d, &N2) ;

sum = N1 + N2;

printf(*%d + %4 = %d\n*, N1, N2, Sum);

UPDATE 2007

17

1"

Steps to creating a program

Edit or create a file using a text editor

Assemble the source code into machine
code object files

Link the object files into an executable
program

Convert the executable to a binary file
Download the file
Run it!

UPDATE 2007

MASM (1)

Type your assembly code in NOTEPAD and
save as abc.asm then,

C:\MASM c:\see\abc.asm

0 [few lines will appear and you just need to press enter for
three times and this process will compile you file for errors
and generate abc.obj and abc.Ist]

C:\LINK c:\see\abc

0 Executable file created

Run the executable file...which is abc.exe
0 Executable file created

UPDATE 2007 10

MASM (2)
The MASM assembler can download it from the
lecturer website or from
http:// www.masm32.com/masmd|.htm
It's an FREEWARE

Translate an assembly code to machine code by
generates the following files

SOURCE FILE
MASM
OBJECT FILE LIST EILE CROSS-REFERENCE

FILE

UPDATE 2007 11

Notepad

abc.ASM

MASM (3)

List file shows all opcodes and
offsets, and locations of errors.

Assembler

abc.LST
@@ abc.CRE Cross-reference File
| - list of symbols and labels
Linker
Map File
abc.MAP - details memory usage
abc.? » Converter--hextobin abc.BIN

UPDATE 2007 12

Files created |

by the assembler and linker

Filename Description Step When Created
hello.asm Source program Edit
hello.obj Object program Assembly
hello.1st Listing file Assembly
hello.exe Executable program Link
hello.map Map file Link

ASM

BAK
BSC
LCOM
DBG
EXE
LIB
LST
OB]
MAP
SBR

Source code created by the editor

Source code backup

Project database created by BSCMAKE

Executable program limited o a single segment
Debug file created by the linker for COM files only
Executable program with multiple segments

Library file
List file, created by the assembler, containing object and source code

Ohbject code created by the assembler
Map file created by the linker showing program segments

Database file created by the assembler for the current module

UPDATE 2007

13

DEBUG

Debug commands may be divided into four categories: program creation/debugging, memory
manipulation, miscellaneous, and input-output:

Program Creation and Debugging
A Assemble a program using instruction mnemonics
G Execute the program currently in memory

R Display the contents of registers and flags

Go to dos prompt or type cmd on the run
command

In dos prompt type “debug”and then ?

UPDATE 2007 14

Debug Command Set

Command Syntax Function

Ragistor A [REGISTER NAME] Examing or modity the contents of an internal register

Chuit b End use of the DEBUG program

Dump D [ADDRESS] Dump tha contants of mamary to the display

Envtar E ADDRESS [LIST) Examine or modify the contents of memory

Fill F STARTING ADDRESS ENDING ADDRESS LIST Fill a block in memaory with the data in list

Mavi M STARTING ADDRESS ENDING ADDRESS DESTINATION ADDRESS Move & block of data from & source location in mamoany
to & destinatlon locatlon

Compars C STARTING ADDRESS EMDING ADDRESS DESTINATION ADDRESS Compare two blocks of data in mamory and display the
lecations that contein different data

Search 5 STARTING ADDRESS EMNDING ADDRESS LIST Search through & block of data in memory and display afl
locations that match the data In list

Input | ADDRESS Faad the input pon

Qutput 0 ADDRESS, BYTE Write the byie to the ouiput port

Hax Add/Subiract H MUMI,MNUMZ Generats hexadecimal aum and diffarence of tha two
numbars

Unassemble I [STARTING ADDRESS ENDING ADDRESS| Unassamble the maching coda into it eqguivalent
aszembler instructions

MHame MW FILE NAKLE Agakgn tha Nlanama ta tha date to be woritten 1o the diak

Write W [STARTING ADDRESS [DANVE STARTING SECTOR MUMBER OF SECTORSI Sava tha contants of memorny in a file on a disketis

Lezal L [STARTING ADDRESS [DANVE STARTING GECTOR MUMBER OF SECTORSN Load mamany with tha contants of o file on a digketle

Assemble & [STARTING ADDRESS] Agzembile the instruction into machine code and $lose in
memaory

Trace T [=ADDRESS| INUMBER] Trace the execution of the specifiad numbar of
instructions

Go G [=STARTING ADDRESS [BREAKPOINT ADDRESS... || Execute the instructions down through the breaskpaint

adddraad

UPDATE 2007

15

Register and Flag Name 1n Debug

R regqister o0 Select C:\WINDOWS\system32\c...
Example Description
R Display the contents of all registers. D: “temp>debuy
R IP Display the contents of IP and prompt for a new value il
R CX Same (for the CX register). T:FUP EI PL NZ NA PO NC
R F Display all flags and prompt for a new flag value. NU UPF EI PL 7R Na PO NC -
Data ragisters Stack pointer
Base pointer
Source Index
Destination indax
[ax-oo00 Bx=ooc0 cx=ooo0 Ox=o0000 | | sp=rreel | sp=cooo | | si=o000 | | br=o000 !
[PS=1CC0 | ES=1CC0, | §5=1CCO | | C8=1CCO | | IP=0100 | | NV UP Ol PL NZ NA PO NC |
Flags
Instruction poimer Set Clear
Code segment OV = Overflow NV = No Overflow
Stack segment DN = Direction Down UP = Direction Up
Exira segment EI = Interrupts Enabled DI = Interrupts Disabled
Data segment

NG = Sign Flag negative
ZR = Zero

AC = Auxiliary Carry
PO = Odd Parity

CY = Carry

UPDATE 2007

PL = Sign Flag positive
NZ = Not Zero

NA = No Auxiliary Carry
PE = Even Parity

NC = No Carry

16

8088 1nstruction

[Label] Insiruction_mnemonic dest., source ; comment

The label & optional.

It must al@ays begin with a letter afid may c@ntain only
letters andidigits.

It cannot @uplicate a register name'®r instruf§ion mnemonic.

A three- or four-lett¢r mnemgnic indicating
the instruction to bejperforme¢d

register, register
or register, memory
or memory, register
NOT memory, memory the assembler
ignores everything
UPDATE 2007 after the semicolon’

Labels »;é .

= Act as place markers
o marks the address (offset) of code and data

= Code label

o target of jump and loop instructions
o example: S1: (followed by colon)

UPDATE 2007 18

Mnemonics and Operands

Instruction Mnemonics

examples: MOV, ADD, SUB, MUL, INC, DEC
Operands

o constant (immediate value)

o constant expression

0 register

2 memory (data label)

UPDATE 2007

19

Comments

Comments are important

o explain the program's purpose

o when it was written, and by whom
o revision information

o tricky coding techniques

o application-specific explanations

Single-line comments
o begin with semicolon (;)

UPDATE 2007

20

Example

;THE FORM OF AN ASSEMBLY Language PROGRAM

;NOTE: USING SIMPLIFIED SEGMENT DEFINITION of
.MODEL SMALL
STACK 64 assembly
.DATA
DATA1 DB 52H program
DATA2 DB 29H
SUM DB?
.CODE
MAIN PROC FAR ;this is the program entry point
MOV AX, @DATA ;load the data segment address
MOV DS, AX ;assign value to DS
MOV AL, DATAT1 ;get the first operand
MOV BL, DATA2 ;get the second operand
ADD AL, BL ;add the operands
MOV SUM, AL ;store the result in location
SO
MOV AH, 4CH ;set up to return to DOS
INT 21 H
MAIN ENDP

END MAIN ;this is the program exit point

UPDATE 2007 (From Muhammad Ali Mazidi The 80x86 IBM PC 21
Compatible Computers Vol.1 and Vol.2)

2

Program usage no more than 64K
data and 64K code
Stack=256bytes
.data=where variables are stored

Example

title Helle World Program (hello.asm)

: This program displays “Hella, world!™
.model small
.stack 100h

.data
message db “Hello, world!”™,0dn,Oah,"$"

.code — beginning of the code

-code segment

main proc Beginning of procedure called main
mov ax,@data @=address of data
mov ds.ax
moy ah,9]]
mov dx,offset mssagws function to c@
int 21h string
mov ax,4L00h Halt the program to return to O/S
int 21h End of procedure

main endp End of program

end main

UPDATE 2007 22

Model Definition (1) }%

choose the size of the memory model.

memory model consists of
SMALL,
MEDIUM,
COMPACT,
LARGE
HUGE
TINY

UPDATE 2007 23

Model Definition (2)

.MODEL SMALL

Most widely used memory models for

the small model uses a maximum of 64K bytes for code and
another 64K bytes for data.

.MODEL MEDIUM
the data must fit into 64K bytes
the code can exceed 64K bytes of memory

.MODEL COMPACT

the data can exceed 64K bytes

but the code cannot exceed 64K bytes
.MODEL LARGE

both data and code can exceed 64K

but no single set of data should exceed 64K
.MODEL HUGE

both code and data can exceed 64K

data items (such as arrays) can exceed 64K

.MODEL TINY
used with COM files in which data and code must fit into 64K bytes

UPDATE 2007 24

Segment Detinition

Can write an Assembly language program that uses only
one segment, but normally a program consists of at least
three segments:

STACK
marks the beginning of the stack segment
stack segment defines storage for the stack
E.go .STACK 64 ;reserves 64 bytes of memory for the stack

.DATA

marks the beginning of the data segment
data segment defines the data that the program will use

.CODE

marks the beginning of the code segment
code segment contains the Assembly language instructions

UPDATE 2007 25

Assembler Directives (1)

Instructions to the assembler instead of
Instructions to be executed at run-time.

The most common used directives are the DB
and DW commands to reserve memory.

E.Q.
Reply dB ‘Press any key to continue’

assenvher directive \

variable name ASCII string

UPDATE 2007 26

Assembler Directives (2)

ORG (origin)
o indicates the beginning of an offset address.
o any code and data that follows starts at the new address

DB (define byte)

o allocates memory in byte-sized units

o follow the directive with the value you wish to store
o decimal, binary, hex, ASCII, or undefined

DUP (duplicate)
o duplicates a given number or character
o precede with number of duplicates, follow (in brackets) with the value

DW (define word)
o similar to DB, but allocates memory in word-sized units
o best to store words at even memory addresses (optimal for 8086)

EQU (equate)
o defines constants
o does not set aside storage for the data

MORE! Refer page 308-319 The 8088 and 8086 Micr%%rocessors by Walter A.Triebel and Avtar Singh
DATE 2007 27

Assembler Directives (3)

E.g.
o data 1 DB 10 ; store decimal value
data_2 DB 6CH ; store hex value
data_ 3 DB ‘M’ ; store single character G as ASCII code
ORG 10h . set offset to 10 hex
data_4 DB “Computer” ; stores 8 ASCII characters
ORG 200h
data_5 DB 10 DUP(0) ; fill 10 bytes with value O
data_6 DB 6 DUP (?7) ; set aside 6 bytes with undefined values
data. 7 DW 320 : store decimal word

To use the above values:

a MOV AL, data 1 : AL is now 14
MOV DI, offsetdata_4 ; DIl is now 10h (the offset) of “Computer”
MOV data 5, BL ; the value of BL is saved to memory

UPDATE 2007 28

Assembler Directives-PROC (function)

The first line of the segment after the .CODE directive is the
PROC

o the procedure is a group of instructions designed to accomplish a
specific function.

A code segment may consist of only one procedure, but usually
IS organized into several small procedures in order to make the
program more structured.
Every procedure must have :

a name defined by the PROC directive,

followed by the assembly language instructions

and closed by the ENDP directive.

The PROC and ENDP statements must have the same label.

The PROC directive may have the option FAR (both IP and CS is
saved) or NEAR (default- IP is saved).

UPDATE 2007 29

Summarize of directive

Directive Description
end End of program assembly
endp End of procedure
page Set a page format for the listing file
proc Begin procedure
title Title of the listing file
.code Mark the beginning of the code segment
.data Mark the beginning of the data segment
.model Specify the program’s memory model
Mnemonic Description Bytes Attribute
.stack Set the size of the stack segment
DB Define byte] Byte
B DW Define word 2 Word
DD Define doubleword 4 Doubleword
DF, DP Define far pointer 6 Far pointer
DQ Define quadword 8 Quadword
DT Define tenbytes 10 Tenbyte
30

UPDATE 2007

Number Format

Hexadecimal numbers ---- character h or H
E.g. MOV AL, 3Ah

Must begin with a number else use zero
E.g. MOV AL, Offth

Q for octal

xB for binary

UPDATE 2007 31

Addressing modes

Addressing modes tells how we can determine the exact location of
the operand we want.

Implied - the data value/data address is implicitly associated with the
instruction.

Register - references the data in a register or in a register pair.
Immediate - the data is provided in the instruction.

Direct - the instruction operand specifies the memory address where data is
located.

Register indirect - instruction specifies a register containing an address,
where data is located. This addressing mode works with Sl, DI, BX and BP
registers. Based - 8-bit or 16-bit instruction operand is added to the
contents of a base register (BX or BP), the resulting value is a pointer to
location where data resides.

Indexed - 8-bit or 16-bit instruction operand is added to the contents of an
index register (Sl or DI), the resulting value is a pointer to location where
data resides.

Based Indexed - the contents of a base register (BX or BP) is added to the
contents of an index register (Sl or DI), the resulting value is a pointer to
location where data resides.

Based Indexed with displacement - 8-bit or 16-bit instruction operand is
added to the contents of a base register (BX or BP) and index register (Sl or
DI), the resulting value is a pointer to location where data resides.

UPDATE 2007 32

Register addressing (1)

Memory is not accessed when this mode is
executed.

Fast

Source and destination must have the same
size '
e.g. ADD AL,BL

UPDATE 2007 33

Register addressing (2)

AX

0000

T

BX

1B69

CX

1643

DX

29A2

SP

FFO3

BP

1B03

S

0001

DI

0004

MOV AX ;AX = 1B69H

1B66
1B67
1B68
1B69
1B6A
1B6B

UPDATE 2007

34

Immediate addressing (1)

The source operand is a constant

Can be used to load information into register
except segment register and flag register
E.Q.

o MOV AX, 567 ; load decimal value 567 into AX
The data must be first moved to a register
then to the segment register.
2 MOV AX, 2560H
a2 MOV DS,AX
o MOV DS,2560H o ERROR!

UPDATE 2007 35

Immediate addressing (2)

1B67H

AX

0G0

BX

1B69

CX

1643

DX

29A2

SP

FFO3

BP

1B03

S

0001

DI

0004

MOV AX,

1B66

1B67
1B68

1B69

1B6A

1B6B

;AX = 1B67H

UPDATE 2007

36

Direct addressing (1)

The effective address 1s formed by the addition of
a segment register and a displacement value that
1s coded directly into the instruction.

This address 1s the offset address
E.g.

o MOV DL, [1234H] ;move contents of DS:1234H 1nto
DL

The physical address 1s calculated by combining
the contents of offset location 1234 with DS

UPDATE 2007 37

How?
Let's said DS=1234H
MOV AL,24H
MOV [2345H],AL

What is the physical address of the memory
location and its contents after the above
execution?

AL=24H
DS:2345 which is 1234H:2345H
12340H+2345H = 14685H = physical address

After the execution the memory location with address 14685H will contain the
value 24H

UPDATE 2007 38

Direct addressing (2)

1B69H

AX

0G0

BX

1B69

CX

1643

DX

29A2

SP

FFO3

BP

1B03

S

0001

DI

0004

1B69
1B6A
1B6B

MOV AX, ;AX = 1B69H

UPDATE 2007

39

Register indirect (1)
A choice of four registers (BX,BP,SI,DI) to use within
the square brackets to specify a memory location.

The operand is held by these register.

'hey must combined with DS in order to generate
the 20-bit physical address.

E.g. MOV [DI],AH

‘move the contents of AH into DS:DlI

MOV DL,[SI]
‘the contents of DS:Sl into DL
MOV AL,[BX]

;the contents of the memory location pointed by DS:BX into AL

UPDATE 2007 40

HOW?

DS=1234H, SI=2345H, and AX=17ABH.
MOV [SI],AX

IS executed. What is the contents of the
memory location?

Contents of AX are moved into memory locations with logical address
DS:Sl amd DS:Sl+1

Therefore the physical address starts at DS + Sl = 14685H

According to little endian (early lecturers)
Low address 14685H contains ABH, the low byte
High address 14686H contains 17H, the high byte

UPDATE 2007

41

Register indirect (2)

0124H

AX

0G0

BX

1B69

CX

1643

DX

29A2

SP

FFO3

BP

1B03

S

0001

DI

0004

MOV AX

1B6B

;AX = 0124H

UPDATE 2007

42

Base relative (1)

Uses one of the two base registers (BX,BP) as the
pointer to the desired memory location.

Similar to register indirect addressing, the only
difference is that an 8 or 16-bits offset may be
Included

Physical address are DS for BX ad SS for BP

Offset is interpreted as a signed 2’s complement
number 8-bits (-128 -> 127) or 16-bits (-32768 ->
+32767)

So have the ability to point forward or backward in
memory.

E.g. MOV CX,[BX]+10 = MOV CX,[BX+10]
= MOV CX,10[BX] ng-
0 :move DS:BX+10 and DS:BX+10+1 into CL and CH
0 ;Physical address = DS*10 + BX+10

UPDATE 2007 43

Base relative (2)

A201H

AX | 0620

3 (7863

CX | 1643

DX | 29A2

UPDATE 2007 44

Index Relative (1)

Similar to based relative addressing

Except that registers DI and Sl hold the offset
address

E.g. MOV DX,[SI]+3

;Physical address= DS*10 + Sl +3

MOV CL,[DI]+6

;Physical address= DS*10 + DI +6

UPDATE 2007 45

How’?

DS = 4500, SS = 2000, BX = 2100, Sl = 1486, DI = 8500,

BP= 7814, and AX = 2512. What are their physical memory
location for the following instruction to be executed?

1. MOV [BX]+20, AX
2. MOV [SI]+10, AX
3. MOV [DI]+4, AX

4. MOV [BP]+12, AX

PA = segment reg. *10 + (offset reg.) + displacement
1. DS:BX+20 45000 + 2100 + 20 = location 47120 = (12) and 47121 = (25)
2. DS:SI+10 45000 + 1486 + 10 = location 46496 = (12) and 46497 = (25)

3. DS:DI+4 45000 + 8500 + 4 = location 4D504 = (12) and 4D505 = (25)
4. SS:BP+12 20000 + 7814+ 12 = location 27826 = (12) and 27827 = (25)

UPDATE 2007 46

AX

BX

CX

1643

DX

29A2

SP

FFO3

BP

1B03

S

0001

DI

0004

MOV AX

UPDATE 2007

;AX =6935H

47

Base Index Relative (1)

Combines based and indexed addressing.

Contents of both registers are not signed numbers (0
— 65535)

One base register and one index register are used.
E.Q.

MOV CH,[BX][SI] + 10
;Physical address= DS*10 + BX +SI +10

MOV AH,[BP][SI] + 5
; Physical address= SS*10 + BP +Sl + 5

UPDATE 2007 48

Base Index Relative (2

AX

BX 1B66

CX | 1643 1867 |39
68 69

DX | 29A2 | T+

SP | FFO3 1B69 24

BP | 1B03 } 1B6A goTL

S| | 0001 1598 AD

DI | 0004

MOV Ax,’ .AX =241BH

UPDATE 2007 49

To remember!!

WAKE C

[BX] | [S]]

DISP BP] | [DI]

TYFPE INSTRUCTION

13 EEGISTEE MOV A3 BX

2) IWMIIEDTATE MOV CH,3AH

3) DIRECT MOV [1234], A3

4)REGISTER. MOV [BX], CL
INDIRECT

S BASEPLTE: MOV [BX + 1), EP
IMDEX

&) EEGISTEER
EELATIVE

MOV CL, [BX +4]

TIBASE MOV ARRAY [BX + EI), DX

EELATIVE
PLUS INDEX

ASSTUME: BX=0300H, 5I=0200H, ARRAY =1000H; DS = 1000H.

8086 ADDRESS MODES

SOTRCE ADDRESS GENERATION DESTINATION
EEGISTEE EEGISTEE
BX A%
DATA EEGISTEER
3AH CH
EEGISTER (D= = 10H) + DISPLACEMEINT MEMOERTY
AT 11234H
10000H + 1234
REGISTER (D3 x10H) + B MEMOETY
CL 10300H
10000H + 0200H
EEGISTER D2z 10H)+ B + 31 MENMOETY
EP 10500H
10000H + 0300H + 0200H
MEMOEY DEx10H)+BX +4 EEGISTEER
10304H CL
10000H + 0Z00H + 4
EEGISTER (D5 = 10H) + AREAY + BX + 51 MEMORY
D 11500H

10000H+1000H+0300H+0200H

In
different

name
DIFFERENT

FORM

WAKE UP! COPY TIME

51

Port Addressing

Use of |/O ports for data communication
between the CPU and outside world.

One way to get data is read it from input port

IN AL,DX
; 8-bits are input to AL from 1/O port DX

To write data to output port

OUT DX,AL
;8-bits are output from AL to I/O port DX

UPDATE 2007 52

a

g

INFO!

MOV AH,[BP][SI] + 5
; Physical address= SS*10 + BP +Sl + 5

Equivalent to
MOV AH, [BP+SI+5]; or
MOV AH, [SI+BP+5] ;

MOV AX, [SI][DI] + offset is illegal.

UPDATE 2007

53

Summary of the Addressing Mode

Addressing Mode | Operand Default Segment
Register Reg None
Immediate Data None
Direct [offset] DS
Register Indirect | [BX] DS
[SI] DS
[DI] DS
Based Relative [BX]+disp DS
[BP]+disp SS
Indexed Relative | [DI]+disp DS
[SI]+disp DS
Based Indexed [BX][SI or DI]+disp | DS
Relative SS

[BP][S! or DI]+disp

UPDATE 2007

54

Summary of Offset

Type of Memory Default Alternate Offset
Reference Segment Segment
Instruction Fetch CS nhone IP

Stack Operations SS none SP,BP

UPDATE 2007 55

Segment Override

The pointer register BX,Sl or DI specifies an offset
address relative to DS

For e.g.
MOV BX, [10H] ; uses DS

It's possible to specify an offset relative to one of the
other segment register.

segment_reqister:[pointer _reg]
For e.g.
MOV BX,ES:[SI]

- if S| = 0100H the source address
=ES:0100H

Can also be used with based and indexed modes.

UPDATE 2007 56

Summary of Segment Overrides

Instruction Segment Used | Default Segment
MOV AX,CS:[BP] CS:BP SS:BP
MOV DX,SS:[SlI] SS:Sl DS:SI
MOV AX,DS:[BP] DS:BP SS:BP
MOV CX,ES:[BX]+12 ES:BX+12 DS:BX+12
MOV SS.[BX][DI]+32,AX | SS:BX+DI+32 DS:BX+DI+32

\ .

UPDATE 2007

57

Types of 8088/86 instructions

Can be (roughly) divided into eight different classes:

Q

Q

Data moving instructions. ---mov, lea, les , push, pop,
pushf, popf

Arithmetic - add, subtract, increment, decrement, convert
byte/word and compare.---- add, inc sub, dec, cmp, neg,
mul, imul, div, idiv

Logic - AND, OR, exclusive OR, shift/rotate and test.---and,
or, xor, not, shl, shr, rcl, rcr.

String manipulation - load, store, move, compare and scan
for byte/word. ---movs, stos, lods.

Control transfer - conditional, unconditional, call subroutine
and return from subroutine. ---jmp, call, ret, conditional
jumps

Input/Output instructions. ---in, out.

Conversions ---cbw, cwd, xlat

Other - setting/clearing flag bits, stack operations, software
interrupts, etc.

UPDATE 2007 58

 Summary of 8088/86 instructions

Data transfer (14 instructions):
MOV, PUSH, POP, XCHG, IN, OUT, XLAT, LEA, LDS, LES, LAHF, SAHF, PUSHF, POPF

Arithmetic (20 instructions):
ADD, ADC, INC, AAA, DAA, SUB, SBB, DEC, NEG, CMP, AAS, DAS, MUL, IMUL, AAM, DIV, IDIV, AAD, CBW, CWD

Logic (12 instructions):
MOT, SHL/SAL, SHR, SAR, ROL, ROR, RCL, RCR, AND, TEST, OR, XOR

String manipulation (6 instructions):
REP, MOVS, CMPS, SCAS, LODS, STOS

Control transfer (26 instructions):
CALL, JMF, RET, JEMZ, JUJINGE, JLEMAING, JB/AJNAE, JBE/NA, JPUJFE, JO, J5, JNEMJNZ, JNLAJGE, JNLEMJG,
JNB/JAE, JNBE/JA, JNP/JPO, JNO, JNS, LOOP, LOOPZ/LOOPE, LOOPNZ/LOOPNE, JCXZ, INT, INTO, IRET

Process control (12 instructions):
CLC, CMC, STC, CLD, STD, CLI, STI, HLT, WAIT, ESC, LOCK, NOP

UPDATE 2007 59

MOV

MOV destination,source
o 8 bit moves

MOV CL,55h

MOV DL,CL

MOV BH,CL
o 16 bit moves

MOV CX,468Fh

MOV AX,CX

MOV BP,D|

Data can be moved among all registers but data
cannot be moved directly into the segment registers
(CS,DS,ES,SS).

To load as such, first load a value into a non-segment
register and then move it to the segment register

MOV AX,1234h
MOV DS,AX

UPDATE 2007 60

ADD / SUB

ADD destination,source

The ADD instruction tells the CPU to add the
source and destination operands and put out

the results in the destination
o MOV DH,25H

ADD DH.34h : -

SUB destination,source g_?
%

o MOV DH,60H

SUB DRASH ; BBH with C=1

UPDATE 2007

61

ADC/SBB

ADC AX, BX ; AX=1234h, BX=2345h
; AX=1234h + 2345h + 1=357Ah,

Analyze the following program:

DATA_A DD 62562FAH

DATA B DD 412963BH

RESULT DD ?
MOV AXWORD PTR DATA_A AX=62FA
SUB AX,WORD PTR DATA_B ‘SUB 963B from AX
MOV WORD PTR RESULTAX 'save the result
MOV AX,WORD PTR DATA_A +2 AX=0625
SBB AX,WORD PTR DATA_B +2 'SUB 0412 with borrow
MOV WORD PTR RESULT+2 AX save the result

Solution:
After the SUB, AX = 62FA — 963B = CCBF and the carry flag is set. Since CF = 1, when SBB is

executed, AX = 625 - 412 - 1 =212. Therefore, the value stored in RESULT is 0212CCBFE.

UPDATE 2007 62

AAA/AAS

AAR/AAS is used for adjusting the result of binary addition/subtraction so as to
facilitate ASCII arithmetic.

Usage: ADD AL, source

ARAR
Numbers 0 1 2 3 4 5 (3 7 8 S
ASCIT 30H 31H 32H 33H 34H 35H 36H 37H 38H 39H

If numeric data are represented by ASCII codes, using binary arithmetic

instruction (e.g. ADD/SUB) would not produce desirable results.
—» MOV AL,”9”

—

For example, if AL = 31H (“1") and BL = 39H (“9"), AL=39H
ADD AL,BL

will result in AL = 6AH, which is not the ASCII code of 10. AL=10

AAR is used to adjust this result and produce 3130H in AX. (%?

@

Similarly, AAS corrects the subtraction result of two ASCII coded numbers.

&

)

UPDATE 2007 63

DAA/DAS

Addition and subtraction of BCD data cannot be performed by the ADD/ADC
and SUB/SBB instructions.

DAA and DAS are used to convert the result to the correct BCD format.

Usage: ADD AL, source
DAA

Let AL = 15H and BL = 25H, which correspond to BCD numbers 15 and 25.
ADD AL,BL

results in AL = 32H, which is an illegal expression in BCD.

Add 06 or 60 if lower or

upper 4-bits greater than
9

DAA

will convert 34AH to 40H.

UPDATE 2007 64

MUL/IMUL(signed)/DIV /IDIV (signed)

MUL source
DIV source

AL=-1 and CL=-2 ‘é’
MULCL ;11111111*11111110=1111110100000010=FD02=AX ®

IMUL CL ; -1*-2=2 @

AX= -21H= -33(decimal) and BH=5H =answer -6 remainder -3
IDIV BH ; AX=FDFAh AL=FA= -6 remainder AH=FD = -3

DIV BH : should BX=05H and DIV BX give you AX=332C
and DX=3 as remainder

UPDATE 2007 65

CBW/CWD

CBW (Convert singed byte to signed word)
will copy D7 (sign flag) to all bits in AH.

CWD (convert signed word to singed
double word) copies D15 of AX to all bits of

the DX register. ®
MOV AX,6E2FH ;28,207 =01101110 0010 1111

MOV CX,13D4H ; +5,076 =0001 0011 1101 0100
ADD AX,CX ;=33,283 = 1000 0010 0000 0011=-32,523

UPDATE 2007 66

A program to add 5 bytes of data
25h,12h,15h,1Fh, and 2Bh.

a

Data and code are mixed in the

Smart programming (1)

MOV AL,00h
ADD AL, 25h
ADD AL, 12h
ADD AL,15h
ADD AL,1Fh
ADD AL,2Bh

instructions here

The

problem with it is if the data
changes, the code must be
searched for every place the data
is included and data retyped.

It is a good idea then to set aside
an area of memory strictly for data

The data is first placed in the
memory locations

o DS:0200 = 25h
DS:0201 = 12h
DS:0202 = 15h
DS:0203 = 1Fh
DS:0204 = 2Bh

a (MOV AL,0

ADD AL,[0200] ; add the
contents of DS:0200 to AL

ADD AL,[0201]
ADD AL,[0202]
ADD AL,[0203]

(@

RETYPE
THE
WHOLE
PROG.

J

ADD AL,[0204] ¢

If the data is stored at a different

offset address, say 0100 h ?7?7?

UPDATE 2007

67

Smart programming,

Use BX as a pointer
MOV AL,0
MOV BX,0200h
ADD AL,[BX]
INC BX

ADD AL,[BX]
INC BX SMARTER WAY
ADD AL,[BX]
INC BX
ADD AL,[BX]
INC BX
ADD AL,[BX]

If the offset address of data is to be changed, only
one instructions will need to be modified

BUT STILL LONG...

UPDATE 2007

BEST

Conditional jump instruction will be used to implement the counter
checking logic.
S SEEICE: > Numlist db 12h,....

count equb
result dw 01h dup (?)
data ends
code segment — @
org 100h /
start: mov AX,data

mov DS,AX

xor AX,AX

xor BX,BX

mov Sl,offset numlist
again: mov BL,[SI]

add AX,BX

inc Sl

dec CX

jnz again

mov Dl,offset result

mov [DI],AX

code ENDS
end start

UPDATE 2007

Decision Instructions for Signed and Unsigned Integers

Muemonic Condition
Signed Operations
JG/INLE Greater/not less or equal ((SF @ OF) + ZF) =0
JGE/INL Greater or equal/not less (SF @ OF) =0
JL/JNGE Less/mot greater or equal (SF @ OF) = 1
JLE/ING Less or equal/not greater ((SF @ OF) + ZF) = 1
JO Overflow (OF = 1)
IS Sign (SF = 1)
JNO Not overflow (OF = ()
JNS Not sign (SF = 0)
Unsigned Operations
JA/INBE Above/not below or equal (CF @ ZF) = 0
JAE/INB Above or equal/not below (CF = ()
JB/INAE Below/not above or equal (CF = 1)
JBE/INA Below or equal/not above (CF & ZF) = 1
Either
IC Carry (CF=1)
JENZ Equal/zero (ZF = 1)
JP/JPE Parity/parity even (PF = 1)
INC Not carry (CF = 0)
INE/INZ Not equal/not zero (ZF = 0)
INP/JPO Not parity/parity odd (PF = 0)

UPDATE 2007

70

Jump instruction

Divided into:
Unconditional jump
Conditional jump

Two cases of jump action:

o SHORT jump --- target location within =128 to +127 from
the current location.

o Intra-segment or NEAR jump --- only IP is changed;
displacement for direct jump is up to 32K.

0 Inter-segment or FAR jump --- both CS and IP are
changed;

Useful in decision and repetition of a specific portion
of the program.

UPDATE 2007 71

Short/Near/Far

Short Jump
(-128 to

DEBUG 127) (-32K to
32K)

1122:0100 EB 1E JMP 0120

1122:0102 E9 FBR 01 JMP 0300

Near Jump

1122:0105 EA 00 02 34 1I2XNJMP 1234:0200

Machine
Code

JMP label ; defaultis near
JMP SHORT label
JMP FAR PTR label

UPDATE 2007

Displacements
IP = IP + disp

New |IP = 0200
New CS = 1234

72

Decision instruction

If the condition by Jxx is TRUE,
then program execution Jumps to the near destination

If the condition by Jxx is FALSE,
then program execution continues with the next
Instruction

Consider JC $S1
S2:

goes to label S1 if the C flag is set, C=1
goes to S2 if the C flag is clear, C=0

UPDATE 2007 73

BE.o.1

DEBUG ////’—’/

1234:0100 cmp ax, [800]
1234:0104 jle 109

CMP dest, src ; dest-src to set flags
L , result is NOT stored

The compare instruction can be used
to set flags without modifying the

destination operand.

1234:0106 jmp 200

1234:0109 *
.ASM » Jump to offset 200h only if
cmp ax, [800h] AX > DS:[800h]
jle loc XOR B c
jmp further_loc A
loc: 0 0 0
0 1 1
JLE/ING Less or equalinot greater (SF ® OF) + ZF)=1 | 1 0 1
UPDATE 2007 1 1 0

74

B.g. 2

Copy 1 byte from

memory location Compare AL with
DS:(BX+2) into the value 61h
AL
AGAIN: MOV AL, [BX]+2

CMP AL, 61H

JB NEXT €t Is AL below the
YES CMP AL, 7AH value 61h? 1 NO

JA NEXT

AND AL, ODFH

NEXT :

JB/INAE Below/not above or equal (CF = 1)
JA/JNBE Above/not below or equal (CF @ ZF) = 0

Mazidi & Mazidi
The 80x86 IBM PC and Compatible Computers (Volume 1) UPDATE. 2007 75

H.g.3

AGAIN: MOV AL, [BX]+2
CMP AL, 61H Compare AL with
IB NEXT the value 7Ah
CMP Is AL above the
IA NEXT l N O value 7Ah?
YE 5/ AND AL, ODFH
NEXT : MOV [SI], AL
JB/INAE Below/not above or equal (CF = 1)
JAJEINBE Above/not below or equal (CF @ ZF) =0

UPDATE 2007 76

B.g.4

AGAIN: MOV AL, [BX]+2
CMP AL, 61H
JB NEXT

CMP AL, 7AH

JA NEXT Bitwise AND register AL
AND AIL. ODFH with ODFH (1101 1111b)
14 i rtrii

NEXT : MOV [SI], AL Move to memory
location DS:SI the

contents of AL

JB/INAE Below/not above or equal (CF = 1)
JA{]NBE Above/not below or equal (CF & ZF) = 0

UPDATE 2007 77

E.g.5

al = *(bx + 2);
if (al >= 0x61 && al <= Ox7A) {
al = al & OxDF;

}

*si = al;
0005 8A 4702 AGAIN: MOV AL, [BX]+2
0008 3C 61 CMP AL, 61H
000A 72(06 JB NEXT
000C 3C 7A CMP AL, 7AH
000E 7702 JA NEXT
0010 24 DF AND AL, ODFH
0012 88 04 NEXT: MOV [SI], AL
JB/INAE Below/not above or equal (;EF = 1“,:

JA/INBE

Above/not below or equal (CF & ZF) =

78

‘ Repeat-Until program and 1nstruction

= sequence

Y

Initialize
repeat
count
= AlLAIN
Y MOV CL,COUNT ;Set loop repeat count
Loop program | AGAIN: -— --- ;1st instruction of loop
statements e .2nd instruction of loop
Y
Decretrn ent -e- --- ;nth instruction of loop
;':En? DEC CL Decrement répeat count by 1
JNZ AGAIN ;Repeat from AGAIN if (CL) # 00H or (ZF) =0
aae e ;First instruction executed after the loop is
.complete, (CL) = 00H, (ZF) = 1
Test
condition

satisfied
7

(cc = true)

(cc = false)

Continue UPDATE 2007 79

[teration

Using condition

Delay: PUSH CX
MOV CX, 2000
Here: DEC CX
JNZ Here
POP CX
Using LOOP instruction _
Delay: PUSHCX Tl
MOV CX, 2000 CX=0

Here: LOOP Here
POP CX

UPDATE 2007 80

F.g. using JCXZ

Jump if register CX 1s zero

Delay_1:

Here:

PUSH CX
MOV CX, 2000
DEC CX

JNZ Here
POP CX

Delay_1:

<:> Here:

Done:

PUSH CX

MOV CX, 2000
DEC CX

JCXZ Done
JMP Here

POP CX

UPDATE 2007

81

LOOPE / LOOPZ LOOPNE / LOOPNZ

H_J

A variation on LOOP
o Decrements CX

o Jumps if CX is not 0 and

ZF is set
Read as:
o Loop while equal
o Loop while zero

UPDATE 2007

H_J

Another variation on LOOP
o Decrements CX

o Jumps if CX is not 0 and
ZF is clear

Read as:
o Loop while not equal
o Loop while not zero

82

Single and nested loop

MOV CX, 10
--- -

LOOP BACK =

OUTER:

INNER:

MOV CX,5
PUSH CX -——
MOV CX, 10

LOOP INNER

LOOP OUTER

UPDATE 2007

83

Example

Assume that the daily temperatures for the last 30 days
have been stored starting at memory location 1200H. Find
first day that had a 20-degree temperature.

MOV CX, 30

MOV DI, 1200H
AGAIN: CMP [DI], 20

INC DI

LOOPNE AGAIN

Set up counter

Set up the pointer
Check temperature
Does not affect flags

~e ~e e e

; If ZF is 0, no day was found

Mazidi & Mazidi
UPDATE 2007 84

Example

Write a program that calculates the average of five temperatures and writes
the result in AX

DATA

BACK:

DB
MOV
SUB
MOV
MOV
CBW
ADD
INC
DEC
JNZ
MOV
CBW
MOV
MOV
CWD
IDIV

+13,-10,+19,+14,-18
CX,5

BX, BX

SI, OFFSET DATA
AL,[SI]

BX, AX
SI

CX
BACK
ALS

CX,AX
AX,BX

CX

UPDATE 2007

;0d,f6,13,0e,ee

;LOAD COUNTER]
;CLEAR BX,

;SET UP POINTER
sMOVE BYTE INTO AL
;SIGN EXTEND INTO AX
;sADD TO BX

s INCREMENT POINTER
;sDECREMENT COUNTER
;LOOP IF NOT FINISHED
sMOVE COUNT TO AL
;SIGN EXTEND INTO AX
sSSAVE DENOMINATOR IN CX
sMOVE SUM TO AX
;SIGN EXTEND THE SUM
;FIND THE AVERAGE

85

Shift

C Target register or memory
) 0
SHL ‘)
C
SAL -) i °
C
SHR 0 "
C
SAR - "

Sign Bit

UPDATE 2007 86

RCL

ROL

RCR

ROR

Rotate

Target register or memory

1

FF Y

F
F Y

b 4

h

¥

Y

L J

UPDATE 2007 87

Example

Write a program that counts the number of 1’s 1n a
byte and writes 1t into BL

DATA1 DB 97 :61h
SUB BL.BL .clear BL to keep the number of 1s
MOV DL.8 -rotate total of 8 times
MOV AL DATAI

AGAIN: ROL ALL.l ‘Totate it once

JINC NEXT :check for 1

INC BL :1f CF=1 then add one to count
NEXT: DEC DL .go through this 8 times

INZ AGAIN .1f not finished go back

NOP

F 3
F 3
F 3

UPDATE 2007

Subroutine handling

CALL & RET (return)
o Saves information on the stack
o Procedure must end with a RET

o Can be NEAR (intra-segment) or FAR (inter-segment)
A NEAR CALL must be matched by a NEAR RET

In a NEAR CALL, the contents of the register IP is pushed onto the
stack

IP is the given a new value, based on the location of the subroutine

RET pops a value off the stack and into IP
o Without CALL, RET pops an invalid IP

In a FAR CALL, both CS and IP are stored on the stack
A FAR return pops IP and CS off the stack

UPDATE 2007 89

CALL SUBRI

CALL

SUBR1 PROC NEAR
; your code

These labels do NOT RET
have colons after them. SUBR1 ENDP

MOV AL, 200 ;

X

X CALL SUBRI1
CALL SUBRI1
CALL SUBR2 SUBR1 PROC FAR

; your code

SUBR1: blahl .« ..

RETEF

SUBR1 ENDP
SUBR2: blah2

UPDATE 2007

DIFFERENCE STYLES

Full Segment Definition
;stack segment
Name1 SEGMENT
db 64 dup (?)
Name1 ENDS
;data segment
Name2 SEGMENT
value1 db 54
;data
Name2 ENDS
;code segment
Name3 SEGMENT
MAIN PROC FAR

ASSUME CS: ,DS: ,SS:

mov AX,Name2
mov DS,AX
MAIN ENDP
Name3 ENDS
END MAIN

Simplified Format
.model small
.stack 64

;data segment
.data
value1 db 54

.code
MAIN PROC FAR

mov AX,@data
mov DS,AX

MAIN ENDP
END MAIN

UPDATE 2007

91

DIFFERENCE STYLES 11

Full Segment Definition
CODE SEGMENT

ASSUME CS:CODE DS:CODE
main proc far

call testi

main proc end

Test1 proc near

Test endp
Msg db “...”

CODE ENDS
END MAIN

Simplified Format
.model small
.stack 64

;data segment

.data
value1 db 54
.code
MAIN PROC FAR
mov AX,@data
mov DS,AX
MAIN ENDP
END MAIN

UPDATE 2007

92

MANY MORE
INSTRUCTIONS.... LEARN IT
YOURSELF

UPDATE 2007

93

Hand Coding (1)

OPCODE | D W MOD | REG R/M
N A _
YT gl
2 TO 6 BYTES

Opcode field ---8-BITS

Register Direction Bit (D bit)
1: destination
0: source

Data Size Bit (W bit)
0: 8 bits 1: 16 bits

* Byte 2 has two fields:

Mode field (MOD)

Reqister field (REG)
Register/memory field (R/M field)

UPDATE 2007

94

Encoding of reg Field when w field us
present in instruction

Register Specified by reg Field Register Specified by reg Field
during 16-Bit Data Operations during 32-Bit Data Operations
Function of w Field Function of w Field

reg Whenw=10 Whenw =1 reg Whenw=10 Whenw =1
000 AL AX D00 AL EAX
001 CL CX 001 CL ECX
010 DL DX 010 DL EDX
011 BL BX 011 BL EBX
100 AH SP 100 AH ESP
101 CH BP 101 CH EBFP
110 DH Sl 110 DH ESI
111 BH DI 1 BH EDI

UPDATE 2007

95

2-bit MOD field and 3-bit R/M field together specify the second

operand
mod = 00 mod = 01 mod =10 mod = 11
Effective Address Calculation
rm rfm r'm r’m | w=0 | w=1
D00 | (BX) +(SD) 000 | BX)=(SH)+D8 | 000 | BX)+(SD+D16 | 000 | AL AX
001 | (BX) +(DI) 001 | BX)=(DDH+D8 | 001 | BX)+@D)+DI16 | 001 | CL CX
010 | (BP) + (3I) 010 | (BP) + (5I) + D& 010 | (BP)+(sI) -D16 | 010 | DL DX
011 | (BP) + (DI) 011 | (BPH)+-(@DDH+DE | 011 | BP)+- DL +DI16 | 011 | BL BX
100 | (5D 100 | (D)~ D& 100 | (SI) + D16 100 | AH | SP
101 | (DI} 101 | (DI) - D& 101 | (DI) + D16 101 |CH | BP
110 | Direct Address 110 | (BP) + D8 110 | (BP)+Dle6 110 | DH SI
111 | (BX) 111 | (BX) -~ D& 111 | (BX)+ D16 111 |BH | DI
Mod Explanation

00 Memory Mode, no displacement follows
except when r/m = 110, then 16-bit
displacement follows.

01 Memory mode, 8-bit displacement
follows

10 Memory mode, 16-bit displacement
follows 96
11 Register Mode (no displacement)

8086/8088 Instruction Set Summary

Mnemu_ni; and Instruction Code
Description
DATA TRANSFER
MOV = Mowve: 6543210 6543210 6543210 6543210
Register/Memory to/from Register | 100010dw | mod reg r/m |
Immediate to Register/Memary | 1100011w | modooorm | data | dataitw =
Immediate to Register | 10t1wreg | data | dataitw=1 |
Memory to Accumulator | 1010000w | addrlow | addr-high |
Accumulator to Memory | 1010001 w | addrlow | addr-high |
Register/Memory to Segment Register | 10001110 | mod O reg r/m |
Segment Register to Register/Memory | 10001100 | mod 0 reg r/m |
REG is assigned according to the following table: Above/below refers to unsigned value
- - Greater = more positive:
16-Bit (w = 1) 8-Bit (w = 0) Segment = iti
000 AX 000 AL 00 ES ifd = 1 then “to" reg; if d = 0 then “from" reg
001 CX 001 CL 01 CS if w = iLEttr:ir;t}.;ird instruction; if w = 0 then byte
g}? [B);{{ g:? [B}II__ 11? gg if mod = 11 then r/m is treated as a REG field
if mod = 00 then DISP = 0%, disp-low and disp-high are
100 SP 100 AH ahsant
101 BP 101 CH if mod = 01 then DISP = disp-low sign-extended fo
110 Sl 110 DH 16 bits, disp-high is absent
111 DI 111 BH if mod = 10 then DISP = disp-high: disp-low
*except if mod = 00 and r/m = then EA = disp-high: ': r::m - gg? :EE” Ei - EEE : Egll:; : g:gz
disp-low. wrm = on -
if ssw = 01 then 16 bits of immediate data form the oper- ': r::m = g}? :EE” Ei = EEE:{ 1 Egll:f: 1 BllgFF:'
and ifr/m = en =
if g:w = 11 then an immediate data byte is sign extended ifr/m = 100 then EA = (SI) + DISP
to form the 16-bit operand !f rfm = 101 then EA = [DI) + DISP .
if v = 0 then “count” = 1:ifv = 1 then “count” in (CL) !f rfm = 110 then EA = (BF) + DISP
register ifr/m = 111 then EA = (BX) + DISP
x = don't care DISP follows 2nd byte of instruction (before data if re-
quired)
UPDATE 2007 97

Refer to 8088/86 datasheet

HAND CODING

MOV AX, 2000H ; LOAD AX REGISTER

MOV DS, AX ; LOAD DATA SEGMENT ADDRESS
MOV SI, 100H ; LOAD SOURCE BLOCK POINTER
MOV DI, 120H ; LOAD DESTINATION BLOCK POINTER
MOV CX, 10H ; LOAD REPEAT COUNTER

NXTPT: MOV AH,[SI] ; MOVE SOURCE BLOCK ELEMENT TO AH
MOV [DI],AH ; MOVE SOURCE BLOCK ELEMENT FROM AH TO DEST. BLOCK
INC SI ; INCREMENT SOURCE BLOCK POINTER
INC DI ; INCREMENT DESTINA. BLOCK POINTER
DEC CX ; DECREMENT REPET COUNTER
JNZ NXTPT ; JUMP TO NXTPT IF CX NOT EQUAL TO ZERO
NOP ; NO OPERATION

|dentify the type of instruction and hand code the above assembly program!

Refer page 74-79, 113-116 The 8088 and 8086 Microprocessors by Walter A.Triebel and Avtar Singh
UPDATE 2007 98

HAND CODING (2)

OPCODE | D| W [MOD | REG | R/M

100010 0 O0 11 000 011 =N
MOV BL,AL A DSh
Opcode = 100010 8A D8
D ="84AL source operand -

—Heim—

W bit = 0 (8-bits) OR
MOD = 11 (register mode)
REG =000 (from AL)
R/M = 01%, (to BL)

OPCODE

D

w

MOD

REG

R/M

000000

0

1

10

000

001 =01 81

OPCODE | MOD | 0| REG | R/M
10001110 11 0 11 000 = 8E D8h
MOV DS,AX
Opcode = Move reg. to segment

1000 1110
MOD=11-reg mode no displacement
REG=11-to DS
R/M=000 — from AX
OPCODE |(D| W | MOD | REG | R/M
000000 1 1 00 000 100=0304h
ADD AX,[SI]

34 12h

Opcode=000000

D = 1 (to register)

W bit = 1 (16-bits)

MOD = 00 (displacement absent)
REG = 000 (to AX)

R/M =100 ([Sl]+disp)

UPDATE Z

ADD [BX][DI] + 1234h, AX
Opcode=000000

D = 0 (from register)

W bit = 1 (16-bits)

MOD = 10 (16-bits displacement)
REG—=000

R/M = 001 _(IBX][DI]+disp)

2

Jump if Condition is met

8-bit displacement

0l11tttn

byte offset

Full displacement

0000 1111 1000tttn word offset
Hex | [t |t |t |n |Flag Test unsigned signed Other ——
0 0{0]|0]|0|OF=1 JO R
1 0(0|0|1|OF=0 INO No overflow
2 0|l0o|l1|l0|CF=1 JB. INAE Below, Not above or equal
3 olol1l1|CF=0 TNB. JAE Not below, Above or equal
4 0(1|0|0|ZF=1 JE. IZ JE. JZ Equal, Zero
5 0|{1|0|1|ZF=0 JNE, INZ INE. INZ Not equal, Not zero
6 0(1|1|0|CF=1orZF=1 JBE., JNA Below or equal, Not above
7 0(1|1|1|CF=0andZF=0 JNBE. JA Not below or equal, Above
8 1|0(0|0|SF=1 IS Sign
9 1|0(0|1|SF=0 TNS Not sign
A 1(0(1]|0|PF=1 JP Parity, Parity Even
B 1/0|1|1|PF=0 JNP Not parity, Parity Odd
c 1/1]0]0]|SF = OF JNGE, JL Less than, Not greater than or equal to
D 1 1/0/1|SF=0F JGE, JNL Mot less than, Greater than or equal to
E 1/1/1]/0]ZF=10rSF # OF NG, JLE Less than or equal to, Not greater than
F 1/1|1]1]ZF=0andSF=O0F JG, INLE Not less than or equal to, Greater than

UPDATE 2007

100

 JMP-Unconditional Jump (to same

segment)
Short 1110 1011: &-bit displacement
Direct 1110 1001: full displacement

Register indirect 1111 1111: 11 100 reg
Memory indirect 1111 1111: mod 100 r/m

Examples:
JMP unconditional jump (same argument)
1110 1011: byte displacement (EB_)
1110 1001: word displacement (E9)

JCXZ jump if CX =0
1110 0011: byte displacement (E3)
(to work with ECX use address size prefix)
LOOP
1110 0010: byte displacement (E2)
Include auto-decrement of the CX register.
Jump if CX is not zero after decrement.

UPDATE 2007 101

Answer @@

MOV AX, 2000H ; IMMEDIATE DATA TO REGISTER B80020
MOV DS, AX ; MOVE REGISTER TO SEGMENT REG S8EDS
MOV SI, 100H ; MOV IMMED. TO REG BEO0OO1
MOV DI, 120H ; MOV IMMED. TO REG BF2001
MOV CX, 10H ; MOV IMMED. TO REG B91000
NXTPT: MOV AH,[SI] ; MOV MEMORY DATA TO REG 8A24
MOV [DI],AH ; MOV REGISTER DATA TO MEMORY 8825
INC S ; INCREMENT REG. 46
INC DI ; INCREMENT REG. 47
DEC CX ; DECREMENT REG. 49
JNZ NXTPT ; JUMP ON NOT EQUAL TO ZERO 75F7
NOP ; NO OPERATION 90

UPDATE 2007 102

QUIZ

Hand code the following instructions
o MOV CX,7

o MOV AL,BL

0 MOV [6465H],AX

2 MOV DL,[SI]

0 MOV AX,[BX+4]

o MOV [DL-8],AL

2o MOV CL,[BX+DI+2080H]
o AND AL,[345H]

o TEST DX,2003H

UPDATE 2007 103

